Short-term Prediction Method of Resources Occupancy for LBS Guidance System
نویسندگان
چکیده
Guidance system can improve the resources utilization of LBS (Location Based Service) system effectively, and the validity of guidance system depends on accurate predicting of the near-future system resources occupancy and its trend. Considering the strong randomicity of short-term characteristic of the trend, a multi-model fusion method integrating adaptive filter and ARMA (Auto Regressive Moving Average) model is proposed to predict the resources occupancy and trend accurately. With the method, observation series of recent resources occupancy is decomposed to different scales and reconstructed by wavelet transform firstly. According to the different features of series at different scale, for approximate signal, the adaptive filter algorithm is used to predict the trend of resources occupancy at coarse scale, and for detail signals in multiple fine scales, ARMA algorithms are adopted. Finally, integrating the prediction results of multi-model from different scales, the resources occupancy and trend with high prediction accuracy can be obtained. Experiment results show that the resources occupancy prediction accuracy of proposed method is higher than that of typical algorithms such as exponential smoothing and weighted Markov algorithms.
منابع مشابه
Short Term Load Forecasting Using Empirical Mode Decomposition, Wavelet Transform and Support Vector Regression
The Short-term forecasting of electric load plays an important role in designing and operation of power systems. Due to the nature of the short-term electric load time series (nonlinear, non-constant, and non-seasonal), accurate prediction of the load is very challenging. In this article, a method for short-term daily and hourly load forecasting is proposed. In this method, in the first step, t...
متن کاملپیش بینی تقاضای کوتاه مدت آب شهر تهران با استفاده از شبکه های عصبی مصنوعی
Short-term water demand modeling plays a key role in urban water resources planning and management. The importance of demand prediction is even greater in countries like Iran with frequent periods of drought. Short-term water demand estimation is useful for planning and management of water and wastewater facilities such as pump scheduling, control of reservoirs and tanks volume, pressure manage...
متن کاملShort term load forecast by using Locally Linear Embedding manifold learning and a hybrid RBF-Fuzzy network
The aim of the short term load forecasting is to forecast the electric power load for unit commitment, evaluating the reliability of the system, economic dispatch, and so on. Short term load forecasting obviously plays an important role in traditional non-cooperative power systems. Moreover, in a restructured power system a generator company (GENCO) should predict the system demand and its corr...
متن کاملShort term electric load prediction based on deep neural network and wavelet transform and input selection
Electricity demand forecasting is one of the most important factors in the planning, design, and operation of competitive electrical systems. However, most of the load forecasting methods are not accurate. Therefore, in order to increase the accuracy of the short-term electrical load forecast, this paper proposes a hybrid method for predicting electric load based on a deep neural network with a...
متن کاملShort-term Traffic Flow Prediction Based on Multivariable Phase Space Reconstruction and LSSVM
Real-time and accurate short-term traffic flow prediction is the premise and key of intelligent traffic control and guidance system. According to this problem, this paper put forward a prediction model based on multivariable phase space reconstruction and least squares support vector machine (LSSVM). First, the model confirms embedding dimension and delay time of the traffic flow, occupancy and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- JCP
دوره 9 شماره
صفحات -
تاریخ انتشار 2014